skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dewitt, Darren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report compression tests on micropillars manufactured from bulk specimens of partially devitrified SAM2×5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4). Yield strength values of ≈6 GPa are obtained. Such a high strength can be attributed to the higher glass transition temperature (883 K) of this material, which impedes the multiplication of shear bands under loading, and to the presence of hard crystalline domains that result from devitrification of the amorphous powders during powder consolidation. The Vickers hardness of the specimens is found to be strongly correlated to the processing temperature and, hence to the volume of crystalline phases present in the specimens. As the processing temperature is increased, there is a reduction in free volume from the structural relaxation process in the amorphous alloy, leading to the eventual nucleation of crystalline phases of BCC Fe, Cr2B, Cr21.30Fe1.7C6, or Fe23B2C4, during the densification process. These results shed light on the relationship between nanocrystalline domains and the mechanical behavior of Fe‐based amorphous/crystalline composites. 
    more » « less